Constant item recommender for use as experimental baseline. Always predicts a score of zero
More...
|
| virtual bool | CanPredict (int user_id, int item_id) |
| | Check whether a useful prediction (i.e. not using a fallback/default answer) can be made for a given user-item combination More...
|
| |
| Object | Clone () |
| | create a shallow copy of the object More...
|
| |
| override void | LoadModel (string filename) |
| | Get the model parameters from a file More...
|
| |
| override float | Predict (int user_id, int item_id) |
| | Predict rating or score for a given user-item combination More...
|
| |
| IList< Tuple< int, float > > | Recommend (int user_id, int n=-1, ICollection< int > ignore_items=null, ICollection< int > candidate_items=null) |
| | Recommend items for a given user More...
|
| |
|
virtual System.Collections.Generic.IList< Tuple< int, float > > | Recommend (int user_id, int n=-1, System.Collections.Generic.ICollection< int > ignore_items=null, System.Collections.Generic.ICollection< int > candidate_items=null) |
| |
| override void | SaveModel (string filename) |
| | Save the model parameters to a file More...
|
| |
| override string | ToString () |
| | Return a string representation of the recommender More...
|
| |
| override void | Train () |
| | Learn the model parameters of the recommender from the training data More...
|
| |
Constant item recommender for use as experimental baseline. Always predicts a score of zero
This recommender can be used for debugging, e.g. to detect non-random orderings in item lists.
| virtual bool CanPredict |
( |
int |
user_id, |
|
|
int |
item_id |
|
) |
| |
|
inlinevirtualinherited |
Check whether a useful prediction (i.e. not using a fallback/default answer) can be made for a given user-item combination
It is up to the recommender implementor to decide when a prediction is useful, and to document it accordingly.
- Parameters
-
| user_id | the user ID |
| item_id | the item ID |
- Returns
- true if a useful prediction can be made, false otherwise
Implements IRecommender.
Reimplemented in ExternalItemRecommender, ExternalRatingPredictor, BiPolarSlopeOne, SlopeOne, Constant, GlobalAverage, UserAverage, ItemAverage, and Random.