|
MyMediaLite
3.11
|
Uses a constant rating value for prediction More...
Public Member Functions | |
| virtual void | AddRatings (IRatings new_ratings) |
| Add new ratings and perform incremental training More... | |
| override bool | CanPredict (int user_id, int item_id) |
| Check whether a useful prediction (i.e. not using a fallback/default answer) can be made for a given user-item combination More... | |
| Object | Clone () |
| create a shallow copy of the object More... | |
| Constant () | |
| Default constructor More... | |
| override void | LoadModel (string filename) |
| Get the model parameters from a file More... | |
| override float | Predict (int user_id, int item_id) |
| Predict rating or score for a given user-item combination More... | |
| IList< Tuple< int, float > > | Recommend (int user_id, int n=-1, ICollection< int > ignore_items=null, ICollection< int > candidate_items=null) |
| Recommend items for a given user More... | |
| virtual System.Collections.Generic.IList< Tuple< int, float > > | Recommend (int user_id, int n=-1, System.Collections.Generic.ICollection< int > ignore_items=null, System.Collections.Generic.ICollection< int > candidate_items=null) |
| virtual void | RemoveItem (int item_id) |
| Remove all feedback by one item More... | |
| virtual void | RemoveRatings (IDataSet ratings_to_delete) |
| Remove existing ratings and perform "incremental" training More... | |
| virtual void | RemoveUser (int user_id) |
| Remove all feedback by one user More... | |
| override void | SaveModel (string filename) |
| Save the model parameters to a file More... | |
| override string | ToString () |
| Return a string representation of the recommender More... | |
| override void | Train () |
| Learn the model parameters of the recommender from the training data More... | |
| virtual void | UpdateRatings (IRatings new_ratings) |
| Update existing ratings and perform incremental training More... | |
Protected Member Functions | |
| virtual void | AddItem (int item_id) |
| virtual void | AddUser (int user_id) |
Protected Attributes | |
| float | max_rating |
| Maximum rating value More... | |
| float | min_rating |
| Minimum rating value More... | |
| IRatings | ratings |
| rating data More... | |
Properties | |
| float | ConstantRating [get, set] |
| the constant rating More... | |
| int | MaxItemID [get, set] |
| Maximum item ID More... | |
| virtual float | MaxRating [get, set] |
| Maximum rating value More... | |
| int | MaxUserID [get, set] |
| Maximum user ID More... | |
| virtual float | MinRating [get, set] |
| Minimum rating value More... | |
| virtual IRatings | Ratings [get, set] |
| The rating data More... | |
| bool | UpdateItems [get, set] |
| bool | UpdateUsers [get, set] |
Uses a constant rating value for prediction
This recommender supports incremental updates. Updates are just ignored, because the prediction is always the same.
|
inline |
Default constructor
|
inlinevirtualinherited |
Add new ratings and perform incremental training
| ratings | the ratings |
Implements IIncrementalRatingPredictor.
Reimplemented in MatrixFactorization, UserItemBaseline, NaiveBayes, ItemKNN, UserKNN, UserAverage, GlobalAverage, and ItemAverage.
|
inlinevirtual |
Check whether a useful prediction (i.e. not using a fallback/default answer) can be made for a given user-item combination
It is up to the recommender implementor to decide when a prediction is useful, and to document it accordingly.
| user_id | the user ID |
| item_id | the item ID |
Reimplemented from Recommender.
|
inlineinherited |
create a shallow copy of the object
|
inlinevirtual |
Get the model parameters from a file
| filename | the name of the file to read from |
Reimplemented from Recommender.
|
inlinevirtual |
Predict rating or score for a given user-item combination
| user_id | the user ID |
| item_id | the item ID |
Implements Recommender.
|
inherited |
Recommend items for a given user
| user_id | the user ID |
| n | the number of items to recommend, -1 for as many as possible |
| ignore_items | collection if items that should not be returned; if null, use empty collection |
| candidate_items | the candidate items to choose from; if null, use all items |
Implemented in WeightedEnsemble, and Ensemble.
|
inlinevirtualinherited |
Remove all feedback by one item
| item_id | the item ID |
Implements IIncrementalRecommender.
Reimplemented in BiasedMatrixFactorization, MatrixFactorization, and ItemAverage.
|
inlinevirtualinherited |
Remove existing ratings and perform "incremental" training
| ratings | the user and item IDs of the ratings to be removed |
Implements IIncrementalRatingPredictor.
Reimplemented in MatrixFactorization, UserItemBaseline, NaiveBayes, ItemKNN, UserKNN, UserAverage, ItemAverage, and GlobalAverage.
|
inlinevirtualinherited |
Remove all feedback by one user
| user_id | the user ID |
Implements IIncrementalRecommender.
Reimplemented in BiasedMatrixFactorization, MatrixFactorization, and UserAverage.
|
inlinevirtual |
Save the model parameters to a file
| filename | the name of the file to write to |
Reimplemented from Recommender.
|
inline |
Return a string representation of the recommender
The ToString() method of recommenders should list the class name and all hyperparameters, separated by space characters.
Implements IRecommender.
|
inlinevirtual |
Learn the model parameters of the recommender from the training data
Implements Recommender.
|
inlinevirtualinherited |
Update existing ratings and perform incremental training
| ratings | the ratings |
Implements IIncrementalRatingPredictor.
Reimplemented in MatrixFactorization, UserItemBaseline, NaiveBayes, ItemKNN, UserKNN, UserAverage, GlobalAverage, and ItemAverage.
|
protectedinherited |
Maximum rating value
|
protectedinherited |
Minimum rating value
|
protectedinherited |
rating data
|
getset |
the constant rating
|
getsetinherited |
Maximum item ID
|
getsetinherited |
Maximum rating value
|
getsetinherited |
Maximum user ID
|
getsetinherited |
Minimum rating value
1.8.9.1