|
MyMediaLite
3.11
|
Cross-validation for item recommendation More...
Static Public Member Functions | |
| static ItemRecommendationEvaluationResults | DoCrossValidation (this IRecommender recommender, uint num_folds, IList< int > test_users, IList< int > candidate_items, CandidateItems candidate_item_mode=CandidateItems.OVERLAP, bool compute_fit=false, bool show_results=false) |
| Evaluate on the folds of a dataset split More... | |
| static ItemRecommendationEvaluationResults | DoCrossValidation (this IRecommender recommender, ISplit< IPosOnlyFeedback > split, IList< int > test_users, IList< int > candidate_items, CandidateItems candidate_item_mode=CandidateItems.OVERLAP, bool compute_fit=false, bool show_results=false) |
| Evaluate on the folds of a dataset split More... | |
| static void | DoIterativeCrossValidation (this IRecommender recommender, uint num_folds, IList< int > test_users, IList< int > candidate_items, CandidateItems candidate_item_mode, RepeatedEvents repeated_events, uint max_iter, uint find_iter=1, bool show_fold_results=false) |
| Evaluate an iterative recommender on the folds of a dataset split, display results on STDOUT More... | |
| static void | DoIterativeCrossValidation (this IRecommender recommender, ISplit< IPosOnlyFeedback > split, IList< int > test_users, IList< int > candidate_items, CandidateItems candidate_item_mode, RepeatedEvents repeated_events, uint max_iter, uint find_iter=1, bool show_fold_results=false) |
| Evaluate an iterative recommender on the folds of a dataset split, display results on STDOUT More... | |
Cross-validation for item recommendation
|
inlinestatic |
Evaluate on the folds of a dataset split
| recommender | an item recommender |
| num_folds | the number of folds |
| test_users | a collection of integers with all test users |
| candidate_items | a collection of integers with all candidate items |
| candidate_item_mode | the mode used to determine the candidate items |
| compute_fit | if set to true measure fit on the training data as well |
| show_results | set to true to print results to STDERR |
|
inlinestatic |
Evaluate on the folds of a dataset split
| recommender | an item recommender |
| split | a dataset split |
| test_users | a collection of integers with all test users |
| candidate_items | a collection of integers with all candidate items |
| candidate_item_mode | the mode used to determine the candidate items |
| compute_fit | if set to true measure fit on the training data as well |
| show_results | set to true to print results to STDERR |
|
inlinestatic |
Evaluate an iterative recommender on the folds of a dataset split, display results on STDOUT
| recommender | an item recommender |
| num_folds | the number of folds |
| test_users | a collection of integers with all test users |
| candidate_items | a collection of integers with all candidate items |
| candidate_item_mode | the mode used to determine the candidate items |
| repeated_events | allow repeated events in the evaluation (i.e. items accessed by a user before may be in the recommended list) |
| max_iter | the maximum number of iterations |
| find_iter | the report interval |
| show_fold_results | if set to true to print per-fold results to STDERR |
|
inlinestatic |
Evaluate an iterative recommender on the folds of a dataset split, display results on STDOUT
| recommender | an item recommender |
| split | a positive-only feedback dataset split |
| test_users | a collection of integers with all test users |
| candidate_items | a collection of integers with all candidate items |
| candidate_item_mode | the mode used to determine the candidate items |
| repeated_events | allow repeated events in the evaluation (i.e. items accessed by a user before may be in the recommended list) |
| max_iter | the maximum number of iterations |
| find_iter | the report interval |
| show_fold_results | if set to true to print per-fold results to STDERR |
1.8.9.1