|
MyMediaLite
3.10
|
Abstract class that uses an average (by entity) rating value for predictions More...
Public Member Functions | |
| virtual void | AddRatings (IRatings new_ratings) |
| Add new ratings and perform incremental training | |
| virtual bool | CanPredict (int user_id, int item_id) |
| Check whether a useful prediction (i.e. not using a fallback/default answer) can be made for a given user-item combination | |
| Object | Clone () |
| create a shallow copy of the object | |
| override void | LoadModel (string filename) |
| Get the model parameters from a file | |
| abstract float | Predict (int user_id, int item_id) |
| Predict rating or score for a given user-item combination | |
| IList< Tuple< int, float > > | Recommend (int user_id, int n=-1, ICollection< int > ignore_items=null, ICollection< int > candidate_items=null) |
| Recommend items for a given user | |
|
virtual System.Collections.Generic.IList < Tuple< int, float > > | Recommend (int user_id, int n=-1, System.Collections.Generic.ICollection< int > ignore_items=null, System.Collections.Generic.ICollection< int > candidate_items=null) |
| virtual void | RemoveItem (int item_id) |
| Remove all feedback by one item | |
| virtual void | RemoveRatings (IDataSet ratings_to_delete) |
| Remove existing ratings and perform "incremental" training | |
| virtual void | RemoveUser (int user_id) |
| Remove all feedback by one user | |
| override void | SaveModel (string filename) |
| Save the model parameters to a file | |
| override string | ToString () |
| Return a string representation of the recommender | |
| abstract void | Train () |
| Learn the model parameters of the recommender from the training data | |
| virtual void | UpdateRatings (IRatings new_ratings) |
| Update existing ratings and perform incremental training | |
Protected Member Functions | |
| virtual void | AddItem (int item_id) |
| virtual void | AddUser (int user_id) |
| void | Retrain (int entity_id, IList< int > indices) |
| Retrain the recommender according to the given entity type | |
| void | Train (IList< int > entity_ids, int max_entity_id) |
| Train the recommender according to the given entity type | |
Protected Attributes | |
| IList< float > | entity_averages |
| The average rating for each entity | |
| float | global_average |
| The global average rating (default prediction if there is no data about an entity) | |
| float | max_rating |
| Maximum rating value | |
| float | min_rating |
| Minimum rating value | |
| IRatings | ratings |
| rating data | |
Properties | |
| int | MaxItemID [get, set] |
| Maximum item ID | |
| virtual float | MaxRating [get, set] |
| Maximum rating value | |
| int | MaxUserID [get, set] |
| Maximum user ID | |
| virtual float | MinRating [get, set] |
| Minimum rating value | |
| virtual IRatings | Ratings [get, set] |
| The rating data | |
| float | this[int index] [get] |
| return the average rating for a given entity | |
| bool | UpdateItems [get, set] |
| bool | UpdateUsers [get, set] |
Abstract class that uses an average (by entity) rating value for predictions
|
inlinevirtualinherited |
Add new ratings and perform incremental training
| ratings | the ratings |
Implements IIncrementalRatingPredictor.
Reimplemented in MatrixFactorization, UserItemBaseline, NaiveBayes, ItemKNN, UserKNN, UserAverage, GlobalAverage, and ItemAverage.
|
inlinevirtualinherited |
Check whether a useful prediction (i.e. not using a fallback/default answer) can be made for a given user-item combination
It is up to the recommender implementor to decide when a prediction is useful, and to document it accordingly.
| user_id | the user ID |
| item_id | the item ID |
Implements IRecommender.
Reimplemented in ExternalItemRecommender, ExternalRatingPredictor, BiPolarSlopeOne, SlopeOne, Constant, GlobalAverage, UserAverage, ItemAverage, and Random.
|
inlineinherited |
create a shallow copy of the object
|
inlinevirtual |
Get the model parameters from a file
| filename | the name of the file to read from |
Reimplemented from Recommender.
|
pure virtualinherited |
Predict rating or score for a given user-item combination
| user_id | the user ID |
| item_id | the item ID |
Implements IRecommender.
Implemented in BPRMF, BiasedMatrixFactorization, LatentFeatureLogLinearModel, LeastSquareSLIM, MatrixFactorization, TimeAwareBaseline, FactorWiseMatrixFactorization, BPRLinear, GSVDPlusPlus, MF, UserItemBaseline, CoClustering, NaiveBayes, SVDPlusPlus, SLIM, SigmoidCombinedAsymmetricFactorModel, MostPopularByAttributes, SigmoidSVDPlusPlus, SigmoidItemAsymmetricFactorModel, SigmoidUserAsymmetricFactorModel, MostPopular, BiPolarSlopeOne, ExternalItemRecommender, ExternalRatingPredictor, ItemKNN, ItemKNN, UserKNN, SlopeOne, Constant, UserKNN, GlobalAverage, UserAverage, ItemAverage, Random, Random, and Zero.
|
inherited |
Recommend items for a given user
| user_id | the user ID |
| n | the number of items to recommend, -1 for as many as possible |
| ignore_items | collection if items that should not be returned; if null, use empty collection |
| candidate_items | the candidate items to choose from; if null, use all items |
Implemented in WeightedEnsemble, and Ensemble.
|
inlinevirtualinherited |
Remove all feedback by one item
| item_id | the item ID |
Implements IIncrementalRecommender.
Reimplemented in BiasedMatrixFactorization, MatrixFactorization, and ItemAverage.
|
inlinevirtualinherited |
Remove existing ratings and perform "incremental" training
| ratings | the user and item IDs of the ratings to be removed |
Implements IIncrementalRatingPredictor.
Reimplemented in MatrixFactorization, UserItemBaseline, NaiveBayes, ItemKNN, UserKNN, UserAverage, ItemAverage, and GlobalAverage.
|
inlinevirtualinherited |
Remove all feedback by one user
| user_id | the user ID |
Implements IIncrementalRecommender.
Reimplemented in BiasedMatrixFactorization, MatrixFactorization, and UserAverage.
|
inlineprotected |
Retrain the recommender according to the given entity type
| entity_id | the ID of the entity to update |
| indices | list of indices to use for retraining |
|
inlinevirtual |
Save the model parameters to a file
| filename | the name of the file to write to |
Reimplemented from Recommender.
|
inlineinherited |
Return a string representation of the recommender
The ToString() method of recommenders should list the class name and all hyperparameters, separated by space characters.
Implements IRecommender.
Reimplemented in BPRMF, BiasedMatrixFactorization, SVDPlusPlus, MatrixFactorization, SigmoidCombinedAsymmetricFactorModel, CoClustering, BPRSLIM, SigmoidItemAsymmetricFactorModel, LeastSquareSLIM, TimeAwareBaseline, SigmoidUserAsymmetricFactorModel, LatentFeatureLogLinearModel, FactorWiseMatrixFactorization, UserItemBaseline, SigmoidSVDPlusPlus, SocialMF, BPRLinear, KNN, NaiveBayes, WRMF, KNN, MostPopular, TimeAwareBaselineWithFrequencies, SoftMarginRankingMF, ExternalItemRecommender, ExternalRatingPredictor, WeightedBPRMF, MultiCoreBPRMF, and Constant.
|
inlineprotected |
Train the recommender according to the given entity type
| entity_ids | list of all entity IDs in the training data (per rating) |
| max_entity_id | the maximum entity ID |
|
pure virtualinherited |
Learn the model parameters of the recommender from the training data
Implements IRecommender.
Implemented in BiasedMatrixFactorization, TimeAwareBaseline, BPRMF, KNN, KNN, MatrixFactorization, LatentFeatureLogLinearModel, CoClustering, BiPolarSlopeOne, FactorWiseMatrixFactorization, BPRSLIM, UserItemBaseline, SlopeOne, LeastSquareSLIM, BPRLinear, TimeAwareBaselineWithFrequencies, SVDPlusPlus, GSVDPlusPlus, SLIM, SigmoidCombinedAsymmetricFactorModel, NaiveBayes, MF, MostPopularByAttributes, SigmoidItemAsymmetricFactorModel, SigmoidUserAsymmetricFactorModel, SigmoidSVDPlusPlus, MostPopular, ExternalItemRecommender, ExternalRatingPredictor, MultiCoreBPRMF, WeightedBPRMF, Constant, ItemKNN, UserKNN, GlobalAverage, UserAverage, ItemAverage, Random, Random, and Zero.
|
inlinevirtualinherited |
Update existing ratings and perform incremental training
| ratings | the ratings |
Implements IIncrementalRatingPredictor.
Reimplemented in MatrixFactorization, UserItemBaseline, NaiveBayes, ItemKNN, UserKNN, UserAverage, GlobalAverage, and ItemAverage.
|
protected |
The average rating for each entity
|
protected |
The global average rating (default prediction if there is no data about an entity)
|
protectedinherited |
Maximum rating value
|
protectedinherited |
Minimum rating value
|
protectedinherited |
rating data
|
getsetinherited |
Maximum item ID
|
getsetinherited |
Maximum rating value
|
getsetinherited |
Maximum user ID
|
getsetinherited |
Minimum rating value
|
get |
return the average rating for a given entity
| index | the entity index |
1.8.1.2