|
MyMediaLite
3.07
|
Grid search for finding suitable hyperparameters. More...
Static Public Member Functions | |
| static double | FindMinimum (string evaluation_measure, string hyperparameter_name, double[] hyperparameter_values, RatingPredictor recommender, ISplit< IRatings > split) |
| Find the the parameters resulting in the minimal results for a given evaluation measure (1D) | |
| static double | FindMinimum (string evaluation_measure, string hp_name1, string hp_name2, double[] hp_values1, double[] hp_values2, RatingPredictor recommender, ISplit< IRatings > split) |
| Find the the parameters resulting in the minimal results for a given evaluation measure (2D) | |
| static double | FindMinimum (string evaluation_measure, string hyperparameter_name, double[] hyperparameter_values, RatingPrediction.RatingPredictor recommender, uint k) |
| Find the the parameters resulting in the minimal results for a given evaluation measure using k-fold cross-validation. | |
| static double | FindMinimumExponential (string evaluation_measure, string hp_name1, string hp_name2, double[] hp_values1, double[] hp_values2, double basis, RatingPrediction.RatingPredictor recommender, ISplit< IRatings > split) |
| Find the the parameters resulting in the minimal results for a given evaluation measure (2D) | |
| static double | FindMinimumExponential (string evaluation_measure, string hp_name, double[] hp_values, double basis, RatingPrediction.RatingPredictor recommender, ISplit< IRatings > split) |
| Find the the parameters resulting in the minimal results for a given evaluation measure (1D) | |
Grid search for finding suitable hyperparameters.
| static double FindMinimum | ( | string | evaluation_measure, |
| string | hyperparameter_name, | ||
| double[] | hyperparameter_values, | ||
| RatingPredictor | recommender, | ||
| ISplit< IRatings > | split | ||
| ) | [inline, static] |
Find the the parameters resulting in the minimal results for a given evaluation measure (1D)
The recommender will be set to the best parameter value after calling this method.
| evaluation_measure | the name of the evaluation measure |
| hyperparameter_name | the name of the hyperparameter to optimize |
| hyperparameter_values | the values of the hyperparameter to try out |
| recommender | the recommender |
| split | the dataset split to use |
| static double FindMinimum | ( | string | evaluation_measure, |
| string | hp_name1, | ||
| string | hp_name2, | ||
| double[] | hp_values1, | ||
| double[] | hp_values2, | ||
| RatingPredictor | recommender, | ||
| ISplit< IRatings > | split | ||
| ) | [inline, static] |
Find the the parameters resulting in the minimal results for a given evaluation measure (2D)
The recommender will be set to the best parameter value after calling this method.
| evaluation_measure | the name of the evaluation measure |
| hp_name1 | the name of the first hyperparameter to optimize |
| hp_values1 | the values of the first hyperparameter to try out |
| hp_name2 | the name of the second hyperparameter to optimize |
| hp_values2 | the values of the second hyperparameter to try out |
| recommender | the recommender |
| split | the dataset split to use |
| static double FindMinimum | ( | string | evaluation_measure, |
| string | hyperparameter_name, | ||
| double[] | hyperparameter_values, | ||
| RatingPrediction.RatingPredictor | recommender, | ||
| uint | k | ||
| ) | [inline, static] |
Find the the parameters resulting in the minimal results for a given evaluation measure using k-fold cross-validation.
The recommender will be set to the best parameter value after calling this method.
| evaluation_measure | the name of the evaluation measure |
| hyperparameter_name | the name of the hyperparameter to optimize |
| hyperparameter_values | the values of the hyperparameter to try out |
| recommender | the recommender |
| k | the number of folds to be used for cross-validation |
| static double FindMinimumExponential | ( | string | evaluation_measure, |
| string | hp_name1, | ||
| string | hp_name2, | ||
| double[] | hp_values1, | ||
| double[] | hp_values2, | ||
| double | basis, | ||
| RatingPrediction.RatingPredictor | recommender, | ||
| ISplit< IRatings > | split | ||
| ) | [inline, static] |
Find the the parameters resulting in the minimal results for a given evaluation measure (2D)
The recommender will be set to the best parameter value after calling this method.
| evaluation_measure | the name of the evaluation measure |
| hp_name1 | the name of the first hyperparameter to optimize |
| hp_values1 | the logarithm values of the first hyperparameter to try out |
| hp_name2 | the name of the second hyperparameter to optimize |
| hp_values2 | the logarithm values of the second hyperparameter to try out |
| basis | the basis to use for the logarithms |
| recommender | the recommender |
| split | the dataset split to use |
| static double FindMinimumExponential | ( | string | evaluation_measure, |
| string | hp_name, | ||
| double[] | hp_values, | ||
| double | basis, | ||
| RatingPrediction.RatingPredictor | recommender, | ||
| ISplit< IRatings > | split | ||
| ) | [inline, static] |
Find the the parameters resulting in the minimal results for a given evaluation measure (1D)
The recommender will be set to the best parameter value after calling this method.
| evaluation_measure | the name of the evaluation measure |
| hp_name | the name of the hyperparameter to optimize |
| hp_values | the logarithms of the values of the hyperparameter to try out |
| basis | the basis to use for the logarithms |
| recommender | the recommender |
| split | the dataset split to use |
1.7.6.1