|
MyMediaLite
3.05
|
Abtract class for combining several prediction methods. More...
Public Member Functions | |
| virtual bool | CanPredict (int user_id, int item_id) |
| Check whether a useful prediction (i.e. not using a fallback/default answer) can be made for a given user-item combination. | |
| Object | Clone () |
| create a shallow copy of the object | |
| abstract void | LoadModel (string file) |
| Get the model parameters from a file. | |
| abstract float | Predict (int user_id, int item_id) |
| Predict rating or score for a given user-item combination. | |
| abstract IList< Tuple< int, float > > | Recommend (int user_id, int n=20, ICollection< int > ignore_items=null, ICollection< int > candidate_items=null) |
| Recommend items for a given user. | |
| abstract void | SaveModel (string file) |
| Save the model parameters to a file. | |
| string | ToString () |
| Return a string representation of the recommender. | |
| virtual void | Train () |
| Learn the model parameters of the recommender from the training data. | |
Public Attributes | |
| IList< IRecommender > | recommenders = new List<IRecommender>() |
| list of recommenders | |
Properties | |
| float | MaxRating [get, set] |
| The max rating value. | |
| float | MinRating [get, set] |
| The min rating value. | |
Abtract class for combining several prediction methods.
| virtual bool CanPredict | ( | int | user_id, |
| int | item_id | ||
| ) | [inline, virtual] |
Check whether a useful prediction (i.e. not using a fallback/default answer) can be made for a given user-item combination.
It is up to the recommender implementor to decide when a prediction is useful, and to document it accordingly.
| user_id | the user ID |
| item_id | the item ID |
Implements IRecommender.
| Object Clone | ( | ) | [inline] |
create a shallow copy of the object
| abstract void LoadModel | ( | string | filename | ) | [pure virtual] |
Get the model parameters from a file.
| filename | the name of the file to read from |
Implements IRecommender.
Implemented in WeightedEnsemble.
| abstract float Predict | ( | int | user_id, |
| int | item_id | ||
| ) | [pure virtual] |
Predict rating or score for a given user-item combination.
| user_id | the user ID |
| item_id | the item ID |
Implements IRecommender.
Implemented in WeightedEnsemble.
| abstract IList<Tuple<int, float> > Recommend | ( | int | user_id, |
| int | n = 20, |
||
| ICollection< int > | ignore_items = null, |
||
| ICollection< int > | candidate_items = null |
||
| ) | [pure virtual] |
Recommend items for a given user.
| user_id | the user ID |
| n | the number of items to recommend, -1 for as many as possible |
| ignore_items | collection if items that should not be returned; if null, use empty collection |
| candidate_items | the candidate items to choose from; if null, use all items |
Implements IRecommender.
Implemented in WeightedEnsemble.
| abstract void SaveModel | ( | string | filename | ) | [pure virtual] |
Save the model parameters to a file.
| filename | the name of the file to write to |
Implements IRecommender.
Implemented in WeightedEnsemble.
| string ToString | ( | ) | [inherited] |
Return a string representation of the recommender.
The ToString() method of recommenders should list the class name and all hyperparameters, separated by space characters.
Implemented in BPRMF, BiasedMatrixFactorization, BPRSLIM, BPRMF_Mapping, SVDPlusPlus, MatrixFactorization, CoClustering, SigmoidCombinedAsymmetricFactorModel, SigmoidItemAsymmetricFactorModel, LeastSquareSLIM, TimeAwareBaseline, SigmoidUserAsymmetricFactorModel, LatentFeatureLogLinearModel, FactorWiseMatrixFactorization, UserItemBaseline, BPRLinear, SigmoidSVDPlusPlus, BPRMF_ItemMapping, SocialMF, BPRMF_UserMapping, NaiveBayes, KNN, KNN, MostPopular, TimeAwareBaselineWithFrequencies, WRMF, MultiCoreBPRMF, BPRMF_ItemMapping_Optimal, CLiMF, SoftMarginRankingMF, BPRMF_ItemMappingSVR, ItemAttributeSVM, Recommender, BPRMF_UserMapping_Optimal, BPRMF_ItemMappingKNN, WeightedBPRMF, and Constant.
| IList<IRecommender> recommenders = new List<IRecommender>() |
list of recommenders
float MaxRating [get, set] |
The max rating value.
The max rating value
float MinRating [get, set] |
The min rating value.
The min rating value
1.7.6.1