|
MyMediaLite
3.04
|
Co-clustering for rating prediction. More...
Public Member Functions | |
| virtual bool | CanPredict (int user_id, int item_id) |
| Check whether a useful prediction (i.e. not using a fallback/default answer) can be made for a given user-item combination. | |
| Object | Clone () |
| create a shallow copy of the object | |
| CoClustering () | |
| Default constructor. | |
| float | ComputeObjective () |
| Compute the current optimization objective (usually loss plus regularization term) of the model. | |
| void | Iterate () |
| Run one iteration (= pass over the training data) | |
| override void | LoadModel (string filename) |
| Get the model parameters from a file. | |
| override float | Predict (int u, int i) |
| Predict rating or score for a given user-item combination. | |
| IList< Tuple< int, float > > | Recommend (int user_id, int n=-1, ICollection< int > ignore_items=null, ICollection< int > candidate_items=null) |
| Recommend items for a given user. | |
|
virtual System.Collections.Generic.IList < Tuple< int, float > > | Recommend (int user_id, int n=-1, System.Collections.Generic.ICollection< int > ignore_items=null, System.Collections.Generic.ICollection< int > candidate_items=null) |
| override void | SaveModel (string filename) |
| Save the model parameters to a file. | |
| override string | ToString () |
| Return a string representation of the recommender. | |
| override void | Train () |
| Learn the model parameters of the recommender from the training data. | |
Protected Attributes | |
| float | max_rating |
| Maximum rating value. | |
| float | min_rating |
| Minimum rating value. | |
| IRatings | ratings |
| rating data | |
Properties | |
| int | MaxItemID [get, set] |
| Maximum item ID. | |
| virtual float | MaxRating [get, set] |
| Maximum rating value. | |
| int | MaxUserID [get, set] |
| Maximum user ID. | |
| virtual float | MinRating [get, set] |
| Minimum rating value. | |
| int | NumItemClusters [get, set] |
| The number of item clusters. | |
| uint | NumIter [get, set] |
| The maximum number of iterations. | |
| int | NumUserClusters [get, set] |
| The number of user clusters. | |
| virtual IRatings | Ratings [get, set] |
| The rating data. | |
Co-clustering for rating prediction.
Literature:
This recommender does NOT support incremental updates.
| CoClustering | ( | ) | [inline] |
Default constructor.
| virtual bool CanPredict | ( | int | user_id, |
| int | item_id | ||
| ) | [inline, virtual, inherited] |
Check whether a useful prediction (i.e. not using a fallback/default answer) can be made for a given user-item combination.
It is up to the recommender implementor to decide when a prediction is useful, and to document it accordingly.
| user_id | the user ID |
| item_id | the item ID |
Implements IRecommender.
Reimplemented in BiPolarSlopeOne, SlopeOne, Constant, GlobalAverage, UserAverage, ItemAverage, and Random.
| Object Clone | ( | ) | [inline, inherited] |
create a shallow copy of the object
| float ComputeObjective | ( | ) | [inline] |
Compute the current optimization objective (usually loss plus regularization term) of the model.
Implements IIterativeModel.
| void Iterate | ( | ) | [inline] |
Run one iteration (= pass over the training data)
Implements IIterativeModel.
| override void LoadModel | ( | string | filename | ) | [inline, virtual] |
Get the model parameters from a file.
| filename | the name of the file to read from |
Reimplemented from Recommender.
| override float Predict | ( | int | user_id, |
| int | item_id | ||
| ) | [inline, virtual] |
Predict rating or score for a given user-item combination.
| user_id | the user ID |
| item_id | the item ID |
Implements Recommender.
| IList<Tuple<int, float> > Recommend | ( | int | user_id, |
| int | n = -1, |
||
| ICollection< int > | ignore_items = null, |
||
| ICollection< int > | candidate_items = null |
||
| ) | [inherited] |
Recommend items for a given user.
| user_id | the user ID |
| n | the number of items to recommend, -1 for as many as possible |
| ignore_items | collection if items that should not be returned; if null, use empty collection |
| candidate_items | the candidate items to choose from; if null, use all items |
Implemented in WeightedEnsemble, and Ensemble.
| override void SaveModel | ( | string | filename | ) | [inline, virtual] |
Save the model parameters to a file.
| filename | the name of the file to write to |
Reimplemented from Recommender.
| override string ToString | ( | ) | [inline] |
Return a string representation of the recommender.
The ToString() method of recommenders should list the class name and all hyperparameters, separated by space characters.
Reimplemented from Recommender.
float max_rating [protected, inherited] |
Maximum rating value.
float min_rating [protected, inherited] |
Minimum rating value.
int MaxItemID [get, set, inherited] |
Maximum item ID.
virtual float MaxRating [get, set, inherited] |
Maximum rating value.
Implements IRatingPredictor.
int MaxUserID [get, set, inherited] |
Maximum user ID.
virtual float MinRating [get, set, inherited] |
Minimum rating value.
Implements IRatingPredictor.
int NumItemClusters [get, set] |
The number of item clusters.
uint NumIter [get, set] |
The maximum number of iterations.
If the algorithm converges to a stable solution, it will terminate earlier.
Implements IIterativeModel.
int NumUserClusters [get, set] |
The number of user clusters.
The rating data.
Implements IRatingPredictor.
Reimplemented in KNN, FactorWiseMatrixFactorization, TimeAwareRatingPredictor, ItemKNN, and UserKNN.
1.7.6.1