|
MyMediaLite
3.02
|
Base class for item recommenders that use some kind of k-nearest neighbors (kNN) model. More...
Public Member Functions | |
| virtual bool | CanPredict (int user_id, int item_id) |
| Check whether a useful prediction (i.e. not using a fallback/default answer) can be made for a given user-item combination. | |
| Object | Clone () |
| create a shallow copy of the object | |
| override void | LoadModel (string filename) |
| Get the model parameters from a file. | |
| abstract float | Predict (int user_id, int item_id) |
| Predict rating or score for a given user-item combination. | |
| override void | SaveModel (string filename) |
| Save the model parameters to a file. | |
| override string | ToString () |
| Return a string representation of the recommender. | |
| abstract void | Train () |
| Learn the model parameters of the recommender from the training data. | |
Protected Attributes | |
| CorrelationMatrix | correlation |
| Correlation matrix over some kind of entity. | |
| uint | k = 80 |
| The number of neighbors to take into account for prediction. | |
| int[][] | nearest_neighbors |
| Precomputed nearest neighbors. | |
Properties | |
| virtual IPosOnlyFeedback | Feedback [get, set] |
| the feedback data to be used for training | |
| uint | K [get, set] |
| The number of neighbors to take into account for prediction. | |
| int | MaxItemID [get, set] |
| Maximum item ID. | |
| int | MaxUserID [get, set] |
| Maximum user ID. | |
Base class for item recommenders that use some kind of k-nearest neighbors (kNN) model.
| virtual bool CanPredict | ( | int | user_id, |
| int | item_id | ||
| ) | [inline, virtual, inherited] |
Check whether a useful prediction (i.e. not using a fallback/default answer) can be made for a given user-item combination.
It is up to the recommender implementor to decide when a prediction is useful, and to document it accordingly.
| user_id | the user ID |
| item_id | the item ID |
Implements IRecommender.
| Object Clone | ( | ) | [inline, inherited] |
create a shallow copy of the object
| override void LoadModel | ( | string | filename | ) | [inline, virtual] |
Get the model parameters from a file.
| filename | the name of the file to read from |
Implements ItemRecommender.
| abstract float Predict | ( | int | user_id, |
| int | item_id | ||
| ) | [pure virtual, inherited] |
Predict rating or score for a given user-item combination.
| user_id | the user ID |
| item_id | the item ID |
Implements IRecommender.
Implemented in BPRMF, BPRMF_ItemMapping, BPRLinear, BPRMF_UserMapping, ItemAttributeSVM, MF, MostPopularByAttributes, MostPopular, UserKNN, ItemKNN, WeightedItemKNN, Random, WeightedUserKNN, and Zero.
| override void SaveModel | ( | string | filename | ) | [inline, virtual] |
Save the model parameters to a file.
| filename | the name of the file to write to |
Implements ItemRecommender.
| override string ToString | ( | ) | [inline, inherited] |
Return a string representation of the recommender.
The ToString() method of recommenders should list the class name and all hyperparameters, separated by space characters.
Implements IRecommender.
Reimplemented in BPRMF, BPRMF_Mapping, BPRLinear, BPRMF_ItemMapping, BPRMF_UserMapping, WRMF, MultiCoreBPRMF, BPRMF_ItemMapping_Optimal, BPRMF_ItemMappingSVR, SoftMarginRankingMF, ItemAttributeSVM, BPRMF_UserMapping_Optimal, BPRMF_ItemMappingKNN, ItemKNN, UserKNN, WeightedBPRMF, ItemAttributeKNN, UserAttributeKNN, WeightedItemKNN, and WeightedUserKNN.
CorrelationMatrix correlation [protected] |
Correlation matrix over some kind of entity.
uint k = 80 [protected] |
The number of neighbors to take into account for prediction.
int [][] nearest_neighbors [protected] |
Precomputed nearest neighbors.
virtual IPosOnlyFeedback Feedback [get, set, inherited] |
the feedback data to be used for training
uint K [get, set] |
The number of neighbors to take into account for prediction.
int MaxItemID [get, set, inherited] |
Maximum item ID.
int MaxUserID [get, set, inherited] |
Maximum user ID.
1.7.6.1