|
MyMediaLite
3.02
|
Combining several predictors with a weighted ensemble. More...
Public Member Functions | |
| virtual bool | CanPredict (int user_id, int item_id) |
| Check whether a useful prediction (i.e. not using a fallback/default answer) can be made for a given user-item combination. | |
| Object | Clone () |
| create a shallow copy of the object | |
| override void | LoadModel (string file) |
| Get the model parameters from a file. | |
| override float | Predict (int user_id, int item_id) |
| Predict rating or score for a given user-item combination. | |
| override void | SaveModel (string file) |
| Save the model parameters to a file. | |
| string | ToString () |
| Return a string representation of the recommender. | |
| override void | Train () |
| Learn the model parameters of the recommender from the training data. | |
Public Attributes | |
| List< IRecommender > | recommenders = new List<IRecommender>() |
| list of recommenders | |
| List< float > | weights = new List<float>() |
| List of component weights. | |
Protected Attributes | |
| double | weight_sum |
| Sum of the component weights. | |
Properties | |
| float | MaxRating [get, set] |
| The max rating value. | |
| float | MinRating [get, set] |
| The min rating value. | |
Combining several predictors with a weighted ensemble.
This recommender does NOT support incremental updates.
| virtual bool CanPredict | ( | int | user_id, |
| int | item_id | ||
| ) | [inline, virtual, inherited] |
Check whether a useful prediction (i.e. not using a fallback/default answer) can be made for a given user-item combination.
It is up to the recommender implementor to decide when a prediction is useful, and to document it accordingly.
| user_id | the user ID |
| item_id | the item ID |
Implements IRecommender.
| Object Clone | ( | ) | [inline, inherited] |
create a shallow copy of the object
| override void LoadModel | ( | string | filename | ) | [inline, virtual] |
Get the model parameters from a file.
| filename | the name of the file to read from |
Implements Ensemble.
| override float Predict | ( | int | user_id, |
| int | item_id | ||
| ) | [inline, virtual] |
Predict rating or score for a given user-item combination.
| user_id | the user ID |
| item_id | the item ID |
Implements Ensemble.
| override void SaveModel | ( | string | filename | ) | [inline, virtual] |
Save the model parameters to a file.
| filename | the name of the file to write to |
Implements Ensemble.
| string ToString | ( | ) | [inherited] |
Return a string representation of the recommender.
The ToString() method of recommenders should list the class name and all hyperparameters, separated by space characters.
Implemented in BPRMF, BiasedMatrixFactorization, BPRMF_Mapping, SVDPlusPlus, MatrixFactorization, CoClustering, SigmoidCombinedAsymmetricFactorModel, SigmoidItemAsymmetricFactorModel, TimeAwareBaseline, SigmoidUserAsymmetricFactorModel, LatentFeatureLogLinearModel, FactorWiseMatrixFactorization, SigmoidSVDPlusPlus, BPRLinear, UserItemBaseline, BPRMF_ItemMapping, SocialMF, BPRMF_UserMapping, NaiveBayes, TimeAwareBaselineWithFrequencies, WRMF, MultiCoreBPRMF, BPRMF_ItemMapping_Optimal, BPRMF_ItemMappingSVR, SoftMarginRankingMF, ItemAttributeSVM, BPRMF_UserMapping_Optimal, BPRMF_ItemMappingKNN, ItemRecommender, RatingPredictor, ItemKNN, UserKNN, UserAttributeKNN, WeightedBPRMF, UserKNNCosine, Constant, UserKNNPearson, ItemAttributeKNN, ItemAttributeKNN, UserAttributeKNN, WeightedItemKNN, ItemKNNPearson, WeightedUserKNN, and ItemKNNCosine.
List<IRecommender> recommenders = new List<IRecommender>() [inherited] |
list of recommenders
double weight_sum [protected] |
Sum of the component weights.
| List<float> weights = new List<float>() |
List of component weights.
float MaxRating [get, set, inherited] |
The max rating value.
The max rating value
float MinRating [get, set, inherited] |
The min rating value.
The min rating value
1.7.6.1