[% title='MyMediaLite: Rating Prediction Tool' prefix='../' %] [% INCLUDE header %]

[% title %]

[% INCLUDE menu %] [% INCLUDE infobox %]
MyMediaLite rating prediction 2.02

 usage:  rating_prediction --training-file=FILE --recommender=METHOD [OPTIONS]

  recommenders (plus options and their defaults):
   - SocialMF num_factors=10 regularization=0.015 social_regularization=1 learn_rate=0.01 num_iter=30 init_mean=0 init_stddev=0.1 (needs --user-relations=FILE)
   - MultiCoreMatrixFactorization num_factors=10 bias_reg=0.0001 reg_u=0.015 reg_i=0.015 learn_rate=0.01 num_iter=30 bold_driver=True init_mean=0 init_stddev=0.1 optimize_mae=False num_blocks=100
   - BiPolarSlopeOne
   - BiasedMatrixFactorization num_factors=10 bias_reg=0.0001 reg_u=0.015 reg_i=0.015 learn_rate=0.01 num_iter=30 bold_driver=False init_mean=0 init_stddev=0.1 optimize_mae=False
   - FactorWiseMatrixFactorization num_factors=10 shrinkage=25 sensibility=1E-05  init_mean=0 init_stdev=0.1 num_iter=10
   - GlobalAverage
   - ItemAttributeKNN k=inf reg_u=10 reg_i=5 (needs --item-attributes=FILE)
   - ItemAverage
   - ItemKNNCosine k=inf reg_u=10 reg_i=5
   - ItemKNNPearson k=inf shrinkage=10 reg_u=10 reg_i=5
   - MatrixFactorization num_factors=10 regularization=0.015 learn_rate=0.01 num_iter=30 init_mean=0 init_stddev=0.1
   - SlopeOne
   - UserAttributeKNN k=inf reg_u=10 reg_i=5 (needs --user-attributes=FILE)
   - UserAverage
   - UserItemBaseline reg_u=15 reg_i=10 num_iter=10
   - UserKNNCosine k=inf reg_u=10 reg_i=5
   - UserKNNPearson k=inf shrinkage=10 reg_u=10 reg_i=5
   - TimeAwareBaseline num_iter=30 bin_size=70 beta=0.4 user_bias_learn_rate=0.003 item_bias_learn_rate=0.002 alpha_learn_rate=1E-05 item_bias_by_time_bin_learn_rate=5E-06 user_bias_by_day_learn_rate=0.0025 user_scaling_learn_rate=0.008 user_scaling_by_day_learn_rate=0.002 reg_u=0.03 reg_i=0.03 reg_alpha=50 reg_item_bias_by_time_bin=0.1 reg_user_bias_by_day=0.005 reg_user_scaling=0.01 reg_user_scaling_by_day=0.005
   - TimeAwareBaselineWithFrequencies num_iter=40 bin_size=70 beta=0.4 user_bias_learn_rate=0.00267 item_bias_learn_rate=0.000488 alpha_learn_rate=3.11E-06 item_bias_by_time_bin_learn_rate=1.15E-06 user_bias_by_day_learn_rate=0.000257 user_scaling_learn_rate=0.00564 user_scaling_by_day_learn_rate=0.00103 reg_u=0.0255 reg_i=0.0255 reg_alpha=3.95 reg_item_bias_by_time_bin=0.0929 reg_user_bias_by_day=0.00231 reg_user_scaling=0.0476 reg_user_scaling_by_day=0.019 frequency_log_base=6.76 item_bias_at_frequency_learn_rate=0.00236 reg_item_bias_at_frequency=1.1E-08
   - CoClustering num_user_clusters=3 num_item_clusters=3 num_iter=30
  method ARGUMENTS have the form name=value

  general OPTIONS:
   --recommender=METHOD             set recommender method (default: BiasedMatrixFactorization)
   --recommender-options=OPTIONS    use OPTIONS as recommender options
   --help                           display this usage information and exit
   --version                        display version information and exit
   --random-seed=N                  initialize the random number generator with N
   --rating-type=float|byte|double  store ratings internally as floats or bytes or doubles (default)

  files:
   --training-file=FILE                   read training data from FILE
   --test-file=FILE                       read test data from FILE
   --file-format=movielens_1m|kddcup2011|ignore_first_line|default
   --data-dir=DIR                         load all files from DIR
   --user-attributes=FILE                 file containing user attribute information, 1 tuple per line
   --item-attributes=FILE                 file containing item attribute information, 1 tuple per line
   --user-relations=FILE                  file containing user relation information, 1 tuple per line
   --item-relations=FILE                  file containing item relation information, 1 tuple per line
   --save-model=FILE                      save computed model to FILE
   --load-model=FILE                      load model from FILE

  prediction options:
   --prediction-file=FILE         write the rating predictions to FILE
   --prediction-line=FORMAT       format of the prediction line; {0}, {1}, {2} refer to user ID, item ID,
                                  and predicted rating, respectively; default is {0}\\t{1}\\t{2}

  evaluation options:
   --cross-validation=K                perform k-fold cross-validation on the training data
   --show-fold-results                 show results for individual folds in cross-validation
   --test-ratio=NUM                    use a ratio of NUM of the training data for evaluation (simple split)
   --chronological-split=NUM|DATETIME  use the last ratio of NUM of the training data ratings for evaluation,
                                       or use the ratings from DATETIME on for evaluation (requires time information
                                       in the training data)
   --online-evaluation                 perform online evaluation (use every tested rating for incremental training)
   --search-hp                         search for good hyperparameter values (experimental)
   --compute-fit                       display fit on training data

  options for finding the right number of iterations (iterative methods)
   --find-iter=N                  give out statistics every N iterations
   --max-iter=N                   perform at most N iterations
   --epsilon=NUM                  abort iterations if RMSE is more than best result plus NUM
   --rmse-cutoff=NUM              abort if RMSE is above NUM
   --mae-cutoff=NUM               abort if MAE is above NUM
[% INCLUDE footer %]