[% title='MyMediaLite: Item Prediction Tool' prefix='../' %] [% INCLUDE header %]

[% title %]

[% INCLUDE menu %] [% INCLUDE infobox %]
MyMediaLite item recommendation from positive-only feedback 2.02

 usage:   item_recommendation --training-file=FILE --recommender=METHOD [OPTIONS]

   methods (plus arguments and their defaults):
   - ItemAttributeSVM C=1 Gamma=0.002 (needs --item-attributes=FILE)
   - SoftMarginRankingMF num_factors=10 bias_reg=0 reg_u=0.0025 reg_i=0.0025 reg_j=0.00025 num_iter=30 learn_rate=0.1 bold_driver=False fast_sampling_memory_limit=1024 init_mean=0 init_stddev=0.1
   - WeightedBPRMF num_factors=10 bias_reg=0 reg_u=0.0025 reg_i=0.0025 reg_j=0.00025 num_iter=30 bold_driver=False learn_rate=0.05 init_mean=0 init_stddev=0.1
   - BPRMF num_factors=10 bias_reg=0 reg_u=0.0025 reg_i=0.0025 reg_j=0.00025 num_iter=30 learn_rate=0.05 uniform_user_sampling=True with_replacement=False, bold_driver=False fast_sampling_memory_limit=1024 update_j=True init_mean=0 init_stddev=0.1
   - BPR_Linear reg=0.015 num_iter=10 learn_rate=0.05 fast_sampling_memory_limit=1024 init_mean=0 init_stdev=0.1 (needs --item-attributes=FILE)
   - ItemAttributeKNN k=80 (needs --item-attributes=FILE)
   - ItemKNN k=80
   - MostPopular
   - Random
   - UserAttributeKNN k=80 (needs --user-attributes=FILE)
   - UserKNN k=80
   - WRMF num_factors=10 regularization=0.015 c_pos=1 num_iter=15 init_mean=0 init_stdev=0.1
   - WeightedItemKNN k=80
   - WeightedUserKNN k=80
   - Zero
  method ARGUMENTS have the form name=value

  general OPTIONS:
   --recommender=METHOD             use METHOD for recommendations (default: MostPopular)
   --group-recommender=METHOD       use METHOD to combine the predictions for several users
   --recommender-options=OPTIONS    use OPTIONS as recommender options
   --help                           display this usage information and exit
   --version                        display version information and exit
   --random-seed=N                  initialize the random number generator with N

  files:
   --training-file=FILE         read training data from FILE
   --test-file=FILE             read test data from FILE
   --file-format=ignore_first_line|default
   --data-dir=DIR               load all files from DIR
   --user-attributes=FILE       file containing user attribute information, 1 tuple per line
   --item-attributes=FILE       file containing item attribute information, 1 tuple per line
   --user-relations=FILE        file containing user relation information, 1 tuple per line
   --item-relations=FILE        file containing item relation information, 1 tuple per line
   --user-groups=FILE           file containing group-to-user mappings, 1 tuple per line
   --save-model=FILE            save computed model to FILE
   --load-model=FILE            load model from FILE

  data interpretation:
   --user-prediction            transpose the user-item matrix and perform user prediction instead of item prediction
   --rating-threshold=NUM       (for rating datasets) interpret rating >= NUM as positive feedback

  choosing the items for evaluation/prediction (mutually exclusive):
   --candidate-items=FILE       use the items in FILE (one per line) as candidate items in the evaluation
   --overlap-items              use only the items that are both in the training and the test set as candidate items in the evaluation
   --in-training-items          use only the items in the training set as candidate items in the evaluation
   --in-test-items              use only the items in the test set as candidate items in the evaluation
   --all-items                  use all known items as candidate items in the evaluation

  choosing the users for evaluation/prediction
   --test-users=FILE            predict items for users specified in FILE (one user per line)

  prediction options:
   --prediction-file=FILE       write ranked predictions to FILE, one user per line
   --predict-items-number=N     predict N items per user (needs --predict-items-file)

  evaluation options:
   --cross-validation=K         perform k-fold cross-validation on the training data
   --show-fold-results          show results for individual folds in cross-validation
   --test-ratio=NUM             evaluate by splitting of a NUM part of the feedback
   --num-test-users=N           evaluate on only N randomly picked users (to save time)
   --online-evaluation          perform online evaluation (use every tested user-item combination for incremental training)
   --filtered-evaluation        perform evaluation filtered by item attribute (expects --item-attributes=FILE)
   --repeat-evaluation          assume that items can be accessed repeatedly - items can occur both in the training and the test data for one user
   --compute-fit                display fit on training data

  finding the right number of iterations (iterative methods)
   --find-iter=N                give out statistics every N iterations
   --max-iter=N                 perform at most N iterations
   --auc-cutoff=NUM             abort if AUC is below NUM
   --prec5-cutoff=NUM           abort if prec@5 is below NUM
[% INCLUDE footer %]