Interface for time-aware rating predictors. More...
Public Member Functions | |
| bool | CanPredict (int user_id, int item_id) |
| Check whether a useful prediction (i.e. not using a fallback/default answer) can be made for a given user-item combination. | |
| void | LoadModel (string filename) |
| Get the model parameters from a file. | |
| double | Predict (int user_id, int item_id) |
| Predict rating or score for a given user-item combination. | |
| double | Predict (int user_id, int item_id, DateTime time) |
| predict rating at a certain point in time | |
| void | SaveModel (string filename) |
| Save the model parameters to a file. | |
| string | ToString () |
| Return a string representation of the recommender. | |
| void | Train () |
| Learn the model parameters of the recommender from the training data. | |
Properties | |
| double | MaxRating [get, set] |
| Gets or sets the maximum rating. | |
| double | MinRating [get, set] |
| Gets or sets the minimum rating. | |
| ITimedRatings | TimedRatings [get, set] |
| training data that also contains the time information | |
Interface for time-aware rating predictors.
Time-aware rating predictors use the information contained in the dates/times of the ratings to build more accurate models.
They may or may not use time information at prediction (as opposed to training) time.
| bool CanPredict | ( | int | user_id, | |
| int | item_id | |||
| ) | [inherited] |
Check whether a useful prediction (i.e. not using a fallback/default answer) can be made for a given user-item combination.
It is up to the recommender implementor to decide when a prediction is useful, and to document it accordingly.
| user_id | the user ID | |
| item_id | the item ID |
Implemented in Ensemble, ItemRecommender, BiPolarSlopeOne, GlobalAverage, ItemAverage, RatingPredictor, SlopeOne, and UserAverage.
| void LoadModel | ( | string | filename | ) | [inherited] |
Get the model parameters from a file.
| filename | the name of the file to read from |
Implemented in Ensemble, WeightedEnsemble, BPR_Linear, BPRMF, ItemRecommender, KNN, MF, MostPopular, Random, Zero, BiasedMatrixFactorization, BiPolarSlopeOne, CoClustering, EntityAverage, FactorWiseMatrixFactorization, GlobalAverage, ItemKNN, KNN, MatrixFactorization, RatingPredictor, SlopeOne, and UserItemBaseline.
| double Predict | ( | int | user_id, | |
| int | item_id | |||
| ) | [inherited] |
Predict rating or score for a given user-item combination.
| user_id | the user ID | |
| item_id | the item ID |
Implemented in Ensemble, WeightedEnsemble, BPR_Linear, BPRMF, ItemKNN, ItemRecommender, MF, MostPopular, Random, UserKNN, WeightedItemKNN, WeightedUserKNN, Zero, BiasedMatrixFactorization, BiPolarSlopeOne, CoClustering, FactorWiseMatrixFactorization, GlobalAverage, ItemAverage, ItemKNN, MatrixFactorization, RatingPredictor, SlopeOne, TimeAwareBaseline, UserAverage, UserItemBaseline, and UserKNN.
| double Predict | ( | int | user_id, | |
| int | item_id, | |||
| DateTime | time | |||
| ) |
predict rating at a certain point in time
| user_id | the user ID | |
| item_id | the item ID | |
| time | the time of the rating event |
Implemented in TimeAwareBaseline, TimeAwareBaselineWithFrequencies, and TimeAwareRatingPredictor.
| void SaveModel | ( | string | filename | ) | [inherited] |
Save the model parameters to a file.
| filename | the name of the file to write to |
Implemented in Ensemble, WeightedEnsemble, BPR_Linear, BPRMF, ItemRecommender, KNN, MF, MostPopular, Random, Zero, BiasedMatrixFactorization, BiPolarSlopeOne, CoClustering, EntityAverage, FactorWiseMatrixFactorization, GlobalAverage, KNN, MatrixFactorization, RatingPredictor, SlopeOne, and UserItemBaseline.
| string ToString | ( | ) | [inherited] |
Return a string representation of the recommender.
The ToString() method of recommenders should list the class name and all hyperparameters, separated by space characters.
Implemented in BPR_Linear, BPRMF, ItemAttributeKNN, ItemKNN, ItemRecommender, UserAttributeKNN, UserKNN, WeightedItemKNN, WeightedUserKNN, WRMF, BiasedMatrixFactorization, CoClustering, FactorWiseMatrixFactorization, ItemAttributeKNN, ItemKNNCosine, ItemKNNPearson, MatrixFactorization, RatingPredictor, TimeAwareBaseline, TimeAwareBaselineWithFrequencies, UserAttributeKNN, UserItemBaseline, UserKNNCosine, and UserKNNPearson.
double MaxRating [get, set, inherited] |
double MinRating [get, set, inherited] |
ITimedRatings TimedRatings [get, set] |
training data that also contains the time information
Implemented in TimeAwareRatingPredictor.
1.6.3